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For the volume of the fundamental parallelotopes this gives

VolFB
=

√

det(G(B)) =
√

det(G(A)) · det(M)2 = VolFA
.

�

Let b(1), b(2), . . . , b(m) be a basis of a lattice L ⊂ R
n of rank m. From

the above proof we see that for each unimodular matrix M ∈ Z
m×m the

columns of the matrix B · M form another basis of L, i. e. there is a one-
to-one correspondence between the unimodular matrices ∈ Z

m×m and the
bases of L.
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Figure 1.2: Two different bases for b(1), b(2) and b(1)′, b(2)′ of the same lat-
tice.

The fundamental parallelotope is one example of a fundamental region. Ev-
ery space tiling with just one lattice point in each copy is called fundamental

region. The volumes of all fundamental regions in a lattice L are equal.
Other invariants of a lattice which are independent from the choice of the
basis are the successive minima introduced by Minkowski [118].

Definition 1.4 For a lattice L ⊂ R
n of rank m the i-th minimum λi(L)

(1 ≤ i ≤ m) is defined as the least positive real number t, for which there
exist i linear independent lattice vectors v ∈ L \ {0} with ‖v‖2

2 ≤ t.

Clearly,
λ1(L) ≤ λ2(L) ≤ · · · ≤ λm(L) .
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t-(v, k, λ) designs for arbitrary values of λ. Therefore, the order of the
prescribed group of automorphisms has to be chosen much smaller, which
results in much larger matrices in (3.3). Then, the LLL-reduction phase
of Algorithm 1.27—albeit running in polynomial time—takes too much
time compared to a naive backtracking approach as described in many
sources [59, 83, 109, 110].
Multidimensional subset sum problems of the form A · x = J , x a {0, 1}-
vector, and J equal to the all-one vector (1, 1, . . . , 1)⊤, are also called exact

cover problems. Knuth [83] gives details how to implement the backtracking
algorithm, as described in [59], efficiently.
In [164] a parallel version of the algorithm of Knuth is described. The
parallelization strategy there is similar to the strategy in Section 1.5. It
enabled the complete solution of the Aztec diamond challenge, a problem
posed by Knuth [83, 164], compare Fig. 3.2.

Figure 3.2: One of 107 nonisomorphic solutions of the Aztec diamond chal-
lenge.

With different implementations of the algorithm formally described in [59]


