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n(k) := N S(k) + 1

Consistently we have to assume that n(k) + 1 ≡ 0 mod N . Concerning the step
h(k) for the k-th iteration, in this case we obtain

h(k) = h(0) 1

S(k)
(6.32)

Notice that β ≡ α+(n(k)−1)h(k) as it is supposed to be. By construction it follows
immediately that for every k ∈ N the relationship

h(k) =
S(k−1)

S(k)
h(k−1) (6.33)

holds.
At this stage, interpolation of the given order N is performed on the subdivision

I
(k)
j containing τ , i.e. with τ ∈ I(k)

j . The error made in the k-th iteration is denoted

with ε(k) and expressed in a natural way through

ε(k) = ‖F (τ)− P
⇀(k)(τ)‖ (6.34)

where P
⇀(k) is the interpolating map corresponding to the k-th iteration.

Supposing the error ε(k) to have the form (to some extent, in a heuristic way)

ε(k) = C
�
h(k)�p C > 0 (6.35)

for every iteration k, we are left with the problem of establishing the exponent
p ∈ N that expresses the order of convergence. For this purpose we compare the
error relative to two consecutive iterations, that is we consider the ratio

ε(k−1)

ε(k)
(6.36)

which leads to the following equation

ε(k−1)

ε(k)
=

�
h(k−1)

h(k)

�p

=

�
S(k)

S(k−1)

�p

(6.37)

and hence to

p =
ln
�ε(k−1)

ε(k)

�
ln

�
S(k)

S(k−1)

� (6.38)

6.2 Numerical Applications

In this section attention focuses more generally on the class of convex-valued maps
taking the following form:

F : I =⇒ R2 : t 7→ A(t) · U

Here A(·) is a matrix-function

A : I −→ R2×2 (6.39)
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and U belongs to C(R2). We also consider the particular case of A coinciding with a
scalar function λ(·). These classes, although remaining simple, are at the same time
very indicative of the state-of-the-art.

At this stage, making use of the notation introduced in Section 2.2 and applying
the recursive definition of the embedding J2 as described in Section 3.2, F

⇀
reads

explicity

F
⇀

(t) = J2

�
F (t)

�
=
�
J1

�
F l1
⊥ (t)

�
, δ∗(l1 ,F (t))

�
l1∈S1

=
�
δ∗(l0 ,F

l1
⊥ (t)), δ∗(l1 ,F (t))

�
l0∈S0,l1∈S1

Since the first component actually represents a directed interval, and therefore takes
only two real values, the above expression can be rewritten (in the case of directed
polytopes, see [Per03]) in an easier way with the aid of the scalar product as shown
in [Per03]. Thus one has:

F
⇀

(t) =

0@−〈y(l, t), l⊥〉
〈y(l, t), l⊥〉
〈y(l, t), l〉

1A for all l ∈ S1

where the point y(l, t) is in the supporting face Y
�
l, F (t)

�
in the direction l.

Some remarks for the particular case of A(·) in (6.39) coinciding with a
scalar function λ(·) should be given. The image λ(t) · U remains convex for every
t ∈ I. Furthermore, if it is assumed non-negative on the interval I, this former fact
induces some simplification in the interpolation process. In fact, applying recursively
Theorem 4.6 and Definition 4.5 the expression for the divided differences takes the
following form

F [Θ] =
F [θ1, . . . , θk]− F [θ0, . . . , θk−1]

θk − θ0

=
λ[θ1, . . . , θk]− λ[θ0, . . . , θk−1]

θk − θ0
· J2

�
U
�

∈
−→
D 2

thus we obtain
F [Θ] ≡ λ[Θ] · J2

�
U
�

From the above representation, it appears clear how the interpolation of F
⇀

corre-
sponds to the interpolation of its components. Concerning the interpolating polyno-
mial, we have as a direct consequence of the above equation, the following relation

KΘF =
�
KΘλ

�
· J2(U)

Similarly concerning the error evaluation one has

‖F⇀ (τ)− P
⇀

(τ)‖ =
��λ(τ)−

�
KΘλ

�
(τ)
�� ‖J2

�
U
�
‖

=
��λ(τ)−

�
KΘλ

�
(τ)
�� ‖U‖

Remark 6.18 (Numerical Tests). Although simplifications as described above may

be possible, we interpolate directly in the space
−→
D 2 and do not perform scalar

interpolation in any of our numerical tests.

Remark 6.19. The above reasoning shows that, if the map F has the particular form
λ(t) · J2(U) then the interpolation of any order is possible just depending on the
function λ(t). For example, in the Numerical Test 6.23 interpolation of order up to
3 has been performed.
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Geometrical Constraints

In [Lem95] conditions on the SVF F are required in order to achieve non-emptiness of
the interpolating map for every t ∈ I. Therein the following condition is enunciated:

Condition 6.20. For every t ∈ I the ball

B
�
m(t), r(t)

�
:= {x ∈ Rn | ‖x−m(t)‖ ≤ r(t)}

with centre m(t) ∈ Rn and radius r(t) > 0 is contained entirely in the image F (t).

As stated in [Lem95, Corollary 2.5], Condition 6.20 has to be set in order to guar-
antee the interpolating map to F to be non-empty and also when deriving error
estimates. We also notice that in [Lem95], the support function δ∗(F (·), l) of each
image F (t) ∈ C(Rn) is interpolated polynomially; nevertheless, the interpolating
map as a whole is not in general polynomial (with respect to the parameter t) as
a set-valued function. In our approach, a second component leading back to the
supporting face is considered and interpolated as well; also because of this fact, the
overall interpolating function KΘF (always) has a polynomial form with respect to
the parameter t. Moreover, the visualisation constitutes a main difference between
the two approaches.

Performing Computer Calculation

The computations have been performed with the aid of the software tool SVUPI, a
C++ collection of classes, especially developed within the frame of the PhD thesis.
A broad description of SVUPI is given in Chapter 7. An exhaustive description
of the mentioned software is shown in the white paper [Per05]. In addition to the
software SVUPI, the C++ class collection implementing the reduced representation
of the so called directed polytopes, has been deployed as well. A full description of it
is to be found in [Per03].

Of course, due to the architecture of today’s computers, some approximations
had to be introduced. The use of reduced representation, certainly represents a first
approximation since the images of the function F

⇀
are approximated through means

of directed polytopes. In practice, this fact corresponds to a discrete choice of direc-
tions. A further approximation is due to the computation of the norm of a directed
set; again, we have to discretise the directions in the bundle.

Several examples have been set up and run on a Intel R© XeonTMCPU 3.06 GHz
based machine.

All computations have been done with double precision since in our case we do
not see any indication for using arbitrarily precision tools like [CLN05], [LED05] or
[GMP05].

6.2.1 Time Dependent Scaled 2-Dimensional Maps

The first bunch, Numerical Test 6.21 and Numerical Test 6.22, of presented compu-
tations does satisfy Condition 6.20 posed above whereas Numerical Test 6.23 does
not. The examples portrayed in this section shows inter alia that no particular ge-
ometrical conditions on F have to be assumed in order to prevent the interpolating
function from being eventually empty for some t ∈ I. What is more, the interpolat-
ing function is always polynomial with respect to t. Of course the first aim of the
section consists in assessing numerically the order of convergence.
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Expanding Ball

Numerical Test 6.21. The convex-valued function F to be interpolated reads

F : [0, 1] =⇒ R2 : t 7→ 1

t+ 1
·B(0, 1) (6.40)

Here B(0, r) denotes as usual the ball centred in 0 with radius r > 0. By simply
applying the definition, we may rewrite F (t) in a more compact form as:

F (t) = B(0,
1

t+ 1
) (6.41)

Clearly F (t) is strongly convex for every t in [0, 1] (recall Definition 6.2). Inci-
dentally, notice that F clearly satisfies Condition 6.20. Furthermore, from Section
3.3.1 we learn that F is directed-differentiable on the interval [0, 1].

Since the tests are focused on the numerical aspects of the directed interpolation,
we do not give a full description of the embedding but just give the end result that
reads:

F
⇀

(t) = J2

� 1

t+ 1
·B(0, 1)

�
=
�

0
⇀
,

1

t+ 1

�
l∈S1

We incidentally mention that we actually need to embed only the unity ball and
that the function F

⇀
takes the following final form:

F
⇀

(t) =
1

t+ 1
· F⇀ (0)

=
1

t+ 1
· J2

�
B(0, 1)

�
Numerical Results and Depiction of Numerical Test 6.21

Interpolation of 2nd degree of F
⇀

has been performed on the knot grid below

Θ := { θ0 = 0.0 , θ1 = 0.5 , θ2 = 1.0 }

obtaining the interpolating map

KΘF =

�
KΘ

1

t+ 1

�
· J2

�
B(0, 1)

�
= (

1

6
t2 − 2

3
t+ 1) ·

�
0
⇀
, 1
�

l∈S1

Evaluation of F
⇀

and of the interpolating map P
⇀

(·) has then been computed on the
grid

T :=
�
τ0 = 0.166667 , τ1 = 0.333333 , τ2 = 0.666667 , τ3 = 0.833333

	
Figure 6.1 depicts the values taken from both F

⇀
and P

⇀
(·) on T . Starting from the

outer circle going towards the interior, the values F
⇀

(τj) and P
⇀

(τj) for j = 0, 1, 2, 3
are shown. For enhanced optical readability, only the boundary without the bundle
has been visualised.

Since we are dealing with a polynomial map of 2nd degree (in the sense of
Chapter 5), only the divided differencesZ

[θ0]

D0 F
⇀

Z
[θ0,θ1]

D1 F
⇀

Z
[θ0,θ1,θ2]

D2 F
⇀



6.2 Numerical Applications 73

Fig. 6.1. F
⇀

respectively P
⇀

coloured respectively in black and in red evaluated on
the grid T . Starting from the outer circle going towards the inside, the boundary
(without the orientation bundle) is shown for τ0, τ1, τ2 and τ3.

of the 0, 1st, and 2nd order have to be computed. These have been depicted in Figure
6.2 coloured respectively in black, red and green. We emphasise an interesting fact.
Not all of the divided differences are convex directed sets; namely, the one of 1st order
(Figure 6.2, coloured in red) is a concave (for further details on the meaning of this
expression refer to Section 2.2 and, of course, [BF01a], [BF01b] or [Per03]) directed
set (visually this means that the directions in the bundle are oriented inwards).
Nevertheless the overall result is convex, by which we mean that the interpolating
map P

⇀
(·) can be obtained through embedding of a convex-valued function, precisely

P
⇀

(t) = J2

�
V2(P

⇀
(t))

�

Fig. 6.2. The divided differences. The boundary and the orientation bundle of the
divided differences of order j = 1, 2, 3 coloured respectively in black, in red, in green.
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For assessing the speed of convergence (expressed by the value of the parame-
ter p in Equation (6.38)) this numerical test has been carried out for 5 iterations
(pay attention to the parameter k in the tables to come) following the scheme
described in Section 6.1.2. As indicated by the values in the tables the order of con-
vergence approaches the one theoretically expected (the original data is filed [Per06,
NumericalTest]).

1st order interpolation

k-th iteration Sk εk p

0 1 0.799604 –
1 4 0.228458 1.80736
2 16 0.0592291 1.94755
3 64 0.0149449 1.98665
4 256 0.00374426 1.99690

As indicated by the values in the tables the order of convergence approaches the
one theoretically expected (the original data is filed [Per06, NumericalTest]).

2nd order interpolation

k-th iteration Sk εk p

0 1 0.0125 –
1 10 3.95946e-05 2.49927
2 100 4.60648e-08 2.93427
3 1000 4.6793e-11 2.99319

Expanding Square

Numerical Test 6.22. The convex-valued function F to be interpolated reads:

F : [0, 1] =⇒ R2 : t 7→ 1

t+ 1
· [−1, 1]2 (6.42)

For arbitrary t ∈ I the convex and compact set F (t) is described equivalently through
the following equations:

F (t) =
h −1

t+ 1
,

1

t+ 1

i2
The presented example may appear far too simple and very similar to the former in
Numerical Test 6.21. However, the map F is not strongly convex (recall Definition
6.2). Nevertheless, the numerical tests assess a good order of convergence. Further-
more, F is directed-differentiable as an immediate consequence of Proposition 3.11.

In this case too, clearly F satisfies Condition 6.20. Passing on to the embedding,
its expression reads (for further details on the computation of the embedding one
may refer to [Per03, Chapter 3 & 4]):

F
⇀

(t) = J2

�h −1

t+ 1
,

1

t+ 1

i2�

=
1

t+ 1
·

8>><>>:
�
− 〈l⊥, pi〉, 〈l⊥, pi〉, 1

�
l∈S1

: ^l ∈
�
(i− 1) π

2
, iπ

2

�
�

1, 1, 1
�

l∈S1
: otherwise
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Hereby, for simplicity with pi, i = 1, . . . , 4, the points (in anticlockwise order)

p2 =

�
−1
1

�
p1 =

�
1
1

�
p3 =

�
−1
−1

�
p4 =

�
1
−1

�
have been denoted and (as in Section 3.4) with ^ the function

^ : Sn−1 −→ [0, 2π) : l 7→ ϕ

mapping the vector l to the angle ϕ with l = (cosϕ, sinϕ).

Numerical Results of Numerical Test 6.22

We provide a comparison of two cases each corresponding to degree 1, 2. Notice the
convergence order numerically determined as in Section 6.1.2 matches the expected
theoretical value for the given order of interpolation (the original data is filed [Per06,
NumericalTest]).

1st order interpolation

k-th iteration Sk εk p

0 1 0.0833333 —
1 10 0.0021645 1.58546
2 100 2.46293e-05 1.94391
3 1000 2.49625e-07 1.99416

The original data is filed [Per06, NumericalTest].

2nd order interpolation

k-th iteration Sk εk p

0 4 0.0999999 —
1 16 0.0285713 1.80736
2 64 0.00740729 1.94755
3 256 0.00186904 1.98665
4 1024 0.000468264 1.99690
5 4096 0.000117045 2.00026
6 16384 2.91754e-05 2.00423
7 65536 7.20413e-06 2.01786
8 262144 1.71105e-06 2.07394
9 1048576 3.37763e-07 2.34080

The original data is filed [Per06, NumericalTest].

3rd order interpolation

k-th iteration Sk εk p

0 1 0.0023137 —
1 10 9.38957e-07 3.39166
2 100 1.13269e-10 3.91853
3 1000 1.16187e-14 3.98895
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Point Expanding to a Segment

Numerical Test 6.23. For a further test, we shall choose an apparently very simple
convex-valued function, namely it reads:

F : [0, 1] =⇒ R2 : t 7→ (et − 1) · co
n�1

1

�
,

�
−1
−1

�o
(6.43)

As well-known from the literature sources, this case hides difficulties. A geometrical
representation of F is given by a segment arising from a point hence not solvable with
the technique shown for example in [Lem95]. The constraint required in Condition
6.20 is harmed twice: F (t) is a point for t = 0; secondly, F (t) is a segment (for
every t) hence no ball can be contained in it. Moreover, the map F is not strongly
convex (recall Definition 6.2). Nervetheless, we are able to reach a good order of
convergence.

Numerical Results of Numerical Test 6.23

In the following tables the results of the numerical tests for the interpolation of
order 1, 2 and 3 are gathered starting, of course, with the order one. The data for
1st order interpolation is gathered in ([Per06, NumericalTest]):

1st order interpolation

k-th iteration Sk εk p

0 1 1.68654 —
1 2 0.616978 1.45077
2 4 0.252282 1.29018
3 8 0.101405 1.31491
4 16 0.0327511 1.63052

whereas for the 2nd order in [Per06, NumericalTest]:

2nd order interpolation

k-th iteration Sk εk p

0 1 0.0138966 —
1 10 2.03303e-05 2.83477
2 100 2.11439e-08 2.98296
3 1000 2.12272e-11 2.99829
4 10000 2.15383e-14 2.99368

Finally, for the 3rd order the numerical tests deliver (the data is filed [Per06,
NumericalTest]):

3rd order interpolation

k Sk εk p

0 1 0.00584869 —
1 10 1.02555e-06 3.75610
2 100 1.08707e-10 3.97470
3 1000 1.19904e-14 3.95742
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6.2.2 Linearly Transformed Ellipse

In the former Section 6.2 the simple, but nevertheless very significant, case of the
matrix A(t) in Equation (6.39) coinciding with a scalar function has been investi-
gated. At this stage we consider a more general case.

Numerical Test 6.24. We give a quite close look at the convex-valued function
obatined by letting an ellipse rotate. Thus we have:

F : [0, 1] =⇒ R2 : t 7→ A(t) ·B(0, 1) (6.44)

Hereby B(0, 1) denotes, as usual, the unit ball and A(·) stands for the function-matrix
below defining an expansion and a rotation of B(0, 1):

A(t) :=

�
cosϕt − sinϕt
sinϕt cosϕt

��
2 0
0 1

�
From Proposition 6.3 we learn that the images F (t) are strongly convex sets

for every t ∈ [0, 1]. Concerning the differentiability of F we first point out that the
function-matrix A(·) is clearly smooth. Therefore due to Proposition 3.13 the map
F is convex-valued and directed-differentiable on the interval [0, 1].

Numerical Results of Numerical Test 6.24

As suggested by the values in the tables the convergence order approaches the one
theoretically expected (the original data is filed [Per06, NumericalTest]).

1st order interpolation

k-th iteration Sk εk p

0 2 1.94357 –
1 4 1.66434 0.223763
2 8 0.940015 0.824192
3 16 0.399897 1.233050
4 32 0.122141 1.711080

2nd order interpolation

k-th iteration Sk εk p

0 1 1.12846 –
1 2 2.05884 -0.867475
2 4 1.26734 0.700033
3 8 0.20406 2.634740
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Example 6.25. In Figure 6.3 to 6.5, the point τ ∈ I \ Θ is considered. The interpo-
lating map KΘF of 2nd order is (visually) compared in τ ∈ I \Θ with the reference
set-valued function F for different iterations (recall Section 6.1.2). The visualisations

V2

��
KΘF

�
(τ)
�

and F (τ) = V2

�
F
⇀

(τ)
�

are depicted in the sequence below respectively in black and in red for three different
iterations.

Fig. 6.3. τ = 0.33333, 2nd order, 1-st
iteration; reference F (τ) shown in red,�
KΘF

�
(τ) shown in black.

Fig. 6.4. τ = 0.33333, 2nd order,
2-nd iteration; reference F (τ) shown
in red,

�
KΘF

�
(τ) shown in black.

Fig. 6.5. τ = 0.33333, 2nd order, 4-th
iteration; reference F (τ) shown in red,�
KΘF

�
(τ) shown in black.

The depictions in Example 6.25 (see Figure 6.3 to 6.5) suggest that if the number
of iterations is increased (recall Section 6.1.2), while leaving the order of interpolation
unchanged, a better visual result is reached.
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Visual Behaviour of the Remainder

In this section we shift perspective and focus on the visualisation of the remainder

R(τ) := F
⇀

(τ)−
�
KΘF

�
(τ)

We interpolate the convex-valued function defined by

Fµ : [0, 1] =⇒ R2 : t 7→ A(t) ·Qµ

whereQµ is the regular polytope defined in Numerical Test 6.26; two different choices
for the function-matrix A(·) are then surveyed.

Numerical Test 6.32. The matrix-function to be considered reads:

A(t) :=

�
cosϕt − sinϕt
sinϕt cosϕt

��
2 0
0 1

�
(6.45)

Picture 6.20 through 6.26 depict the visualisations obtained for this case.

Numerical Test 6.33. The matrix-function considered reads:

A(t) :=

�
et 0
0 t5 + 1

�
(6.46)

The visualisation corresponding to this case are given in Picture 6.27 through 6.42.

We perform interpolation of degree n = 2 on the interval I := [0, 1] and evaluate the
remainder in a specified point τ ∈ I. We investigate the behaviour of the remainder
when increasing the number of sides µ; this action corresponds to a smoothing of
the involved SVF.

We observe that in the first case (see Picture 6.20 to Picture 6.26) the remainder
appears not to shrink to a point as the parameter µ increases whereas in the second
case this seems to be the case (see Picture 6.27 to Picture 6.32).

Picture 6.33 to 6.42 have been genereted leaving the increment h decrease (fol-
lowing the scheme described in Section 6.1.2) while leaving the parameter µ fixed
instead.

The reference function F
⇀

is plotted in black, the interpolating map KΘF in red
and the remainder in green. For enhanced readability the orientation bundle of the
visualised sets is not shown.
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Example 6.34. Second order interpolation of the convex-valued map Fµ, for A(·) as
in Numerical Test 6.32, has been performed on the interval [0, 1].

Fig. 6.20. F2(τ),
�
KΘF2

�
(τ), R(τ),

τ = 0.03125, 2nd order
Fig. 6.21. F4(τ),

�
KΘF4

�
(τ), R(τ),

τ = 0.03125, 2nd order

Fig. 6.22. F8(τ),
�
KΘF8

�
(τ), R(τ),

τ = 0.03125, 2nd order
Fig. 6.23. F16(τ),

�
KΘF16

�
(τ), R(τ),

τ = 0.03125, 2nd order

Fig. 6.24. F32(τ),
�
KΘF32

�
(τ), R(τ),

τ = 0.03125, 2nd order
Fig. 6.25. F64(τ),

�
KΘF64

�
(τ), R(τ),

τ = 0.03125, 2nd order

Fig. 6.26. F128(τ),
�
KΘF128

�
(τ),

R(τ), τ = 0.03125, 2nd order

Example 6.34: interpolation of 2nd order.
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Example 6.35. For this set of visualisations, the convex-valued map Fµ with A(·) as
in Numerical Test 6.33, has been considered. The map Fµ has been interpolated on
the interval [0, 1].

Fig. 6.27. F4(τ),
�
KΘF4

�
(τ), R(τ),

τ = 0.03125, 2nd order
Fig. 6.28. F8(τ),

�
KΘF8

�
(τ), R(τ),

τ = 0.03125, 2nd order

Fig. 6.29. F16(τ),
�
KΘF16

�
(τ), R(τ),

τ = 0.03125, 2nd order
Fig. 6.30. F32(τ),

�
KΘF32

�
(τ), R(τ),

τ = 0.03125, 2nd order

Fig. 6.31. F64(τ),
�
KΘF64

�
(τ), R(τ),

τ = 0.03125, 2nd order
Fig. 6.32. F128(τ),

�
KΘF128

�
(τ),

R(τ), τ = 0.03125, 2nd order

Example 6.35: interpolation of 2nd order.
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Example 6.36. We now change perspective and shrink the interpolation interval Ik

containing τ by increasing the number of subdivision Sk as it has been described in
Section 6.1.2. The matrix A(t) as in Numerical Test 6.32 has been considered. 1

Fig. 6.33. Sk = 1, F4(τ),�
KΘF4

�
(τ), R(τ), τ = 0.03125,

2nd order

Fig. 6.34. Sk = 2, F4(τ),�
KΘF4

�
(τ), R(τ), τ = 0.03125,

2nd order

Fig. 6.35. Sk = 4,F4(τ),�
KΘF4

�
(τ), R(τ), τ = 0.03125,

2nd order

Fig. 6.36. Sk = 8, F4(τ),�
KΘF4

�
(τ), R(τ), τ = 0.03125,

2nd order

Fig. 6.37. Sk = 16, F4(τ),�
KΘF4

�
(τ), R(τ), τ = 0.03125,

2nd order

Example 6.36: interpolation of 2nd order.

1 Please note that the picture shown in the upper-left corner had to be truncated.
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Example 6.37. We proceed like in Example 6.36 with the choice for the matrix A(t)
given by Numerical Test 6.33. 2

Fig. 6.38. Sk = 1, F100(τ),�
KΘF100

�
(τ), R(τ), τ = 0.03125,

2nd order

Fig. 6.39. Sk = 2, F100(τ),�
KΘF100

�
(τ), R(τ), τ = 0.03125,

2nd order

Fig. 6.40. Sk = 4, F100(τ),�
KΘF100

�
(τ), R(τ), τ = 0.03125,

2nd order

Fig. 6.41. Sk = 8, F100(τ),�
KΘF100

�
(τ), R(τ), τ = 0.03125,

2nd order

Fig. 6.42. Sk = 16, F100(τ),�
KΘF100

�
(τ), R(τ), τ = 0.03125,

2nd order

Example 6.37: interpolation of 2nd order.

2 Please note that the first picture shown had to be truncated in order to leave
proportion unaltered.


